Web3-Intern ™️ pfp
Web3-Intern ™️
@chijiokeal
Prove that:
3 replies
6 recasts
10 reactions

Josephine Oriaku® pfp
Josephine Oriaku®
@josephineoriaku
Using the Euler’s identity e^{i\pi} + 1 = 0 Which is derived from Euler’s formula: e^{ix} = \cos x + i \sin x So, we get: e^{i\pi} = \cos \pi + i \sin \pi = -1 + 0i = -1 Therefore: e^{i\pi} + 1 = -1 + 1 = 0
0 reply
0 recast
1 reaction

Web3-Intern ™️ pfp
Web3-Intern ™️
@chijiokeal
My queen 🥹
0 reply
0 recast
0 reaction